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Asymptotic expansions of the fundamental solution of the singularly perturbed wave equation, which desen'bes the propagation 
of perturbations in a viscous medium, are constructed. In particular, a uniform expansion in the region of the wave front, which 
desenl~es the smoothing of the discontinuity due to the presence of viscosity, is obtained. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

We will assume that the propagation of perturbations in a viscous medium is described by the following equation 

_ 02 ~2 2 
p~_(~t2 _~x2 _ E ~t ~x2 02 ~;= f(x,t)  

This holds, in particular, for a viscous gas. 
When e = 0 the fundamental solution of the operator  P suffers a discontinuity on the wave front: ~ = 

8 ( t -  lxl)/2, where 0 is Heaviside's function. When e ~e 0 it is continuous, and hence as ~ ---) 0 it should be a function 
of the type of boundary layer in the neighbourhood of the wave front. Below we construct asymptotic expansions 
of  the fundamental solution of the operator  B as t --~ +0 and as to = t/~ 2 --) **, k = x/t = coust. In the first case, we 
use the theorem of the expansion of a transform, and in the second we use the method of steepest descent. 

2. T H E  A S Y M P T O T I C  F O R M  A S  t --~ + 0  

Suppose ~ is the fundamental solution of the slow increase in the operator  P 

P~ -- 6(x, t) (2.1) 

We apply a Fourier  transformation with respect to x to Eq. (2.1), we obtain a solution of the corresponding 
ordinary differential equation [1, p. 200] and we use the formula for inverting a Fourier transform. We obtain 

0(0+7 ( £ 2  2.]shot2(r)t  , 
~ = ~  j e x p / - - - r  t l ~ c o s x r a r  (2.2) 

0 ~, 2 ) ao(r ) 

%4 4 2~ )~ :o(')={T"-'j 
It can be shown, by integration by parts, that ~ = O(x -N) for any N, x -~ +**. Henceforth we will assume that 

x>O.  
We apply a Laplace transformation to relation (2.2) 

+ -  , + -  c o s x r  
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The validity of the change in the order of integration follows from the absolute convergence of the repeated 
integral and Fubini's theorem. We further use the formulae from [2, p. 264] and t3.723.2) from [3, p. 420]. 

Using the inversion formula taking into account the replacement p = (p - 1)/e we obtain 

1 , 0 . , -  ((p-l),'l ; = (p_ 0 # (2.3) 

Substituting the asymptotic expansion of the last factor in the integrand at an infinitely distant point into (2.3) 
and integrating term by term, in accordance with Eq. (9.397) of [4, p. 433], we obtain 

/ • ) + m  y. C4 tt/2+~ t --* +0 (2.4) 

X m 
c, =.÷):__, 

m . ~  2m 

m,n~0 

where D- t  are parabolic cylinder functions. 
Relation (9.246.1) of [3, p. 1079] shows that the terms of the series (2.4) form an asymptotic scale. An estimate 

of the residue, from which it follows that expansion (2.4) is in fact asymptotic, was made in [5, p. 326]. 
One term of this expansion gives 

2e t ~ 22.) 
' 

3. T H E  S A D D L E  P O I N T  A N D  T H E  L I N E  O F  S T E E P E S T  D E S C E N T  

Making the change z = qp in (2.3), where we have taken the analytical extension of the main term of the root 
from the real axis in the right half-plane, we obtain 

i f ~ ,  = - ~ - ~  z z - I  _ E(z,te)fexp(oul(Z)) (3.1) 

where 

~,=xlt>O, O0=tlg 2, q(Z)=Z2-1-~,(Z-I/z) 

and the contour C is the image of the vertical straight line for this change of variables. 
The saddle points can be found from the equation 

z 3 _ ~ 2  / 2 - ~ , / 2 =  0 (3.2) 

Equation (3.2) has a unique real root Zl > 0. Below we will assume that q(zl) < 0, when Z ~e 1, q"(zl) > 0, and 
also that the function zl = zl(Z) is monotonically increasing and zl(1) = 1. 

We obtain the following asymptotic representation for zt using Newton's diagram or directly from Cardano's 
formula 

zl= +~+ .... X->0; 

2 + .... ~,---~ I +-~+ .... k---~ ' z i = l + k - I  Zl = ~ *% 2 

Suppose z = ~ +/11. The equation of the line of steepest descent L can be found from the relations Im q(z) = 
Im q(zl), Re q(z) < Re q(zl) 

F(~, q) = ( 2 ~ -  ~.)(~2 + 1"12 )_ ~. = 0 (3.3) 

It follows from Eq. (3.3) that ~ > ~J2 and that the line L is symmetrical about the real axis. In addition, 
L allows of the explicit representation ~ = ~(TI) since bF/b~ > 0. The function ~ = ~(~) is monotonically increasing 



A s y m p t o t i c  f o r m  of  the  fundamenta l  solut ion of  the singularly pe r tu rbed  wave equa t ion  319 

when T I < 0 and monotonically decreasing when 11 > 0. 
When zl > 1 (k > 1) the contour C can be deformed into L. In fact, on the arcs of circles of radius R situated 

between C and L (see Fig. 1), we have 

Req(z) = R 2 cos 2¢p- ~t,Rcosq~ +O(1) < 0 

for sufficiently large R(R = Izl, tp = arg z). When zl < 1 (Z > 1), when C is deformed into L we must once again 
take into account the residue of  the integrand with respect to the point z = 1 

R es( z2_l, I)= 21-- (3.4) 

4. T H E  A S Y M P T O T I C  F O R M  AS to ---> oo 

Consider the equation 

q(z)-q(zi)=-u 2 (4.1) 

By the inverse-function theorem a holomorphic function z = z(u) exists, defined in a certain region of the origin 
of coordinates in the u plane, which turns (4.1) into an identity and such that 

z(0) = Zl, z'(0) = i(2 / q"(Zl ))Y2 
Here and below the root of a real positive number is understood in the sense of the principal value. 

Suppose 8 is a small positive number. We deform the contour C into L and split it into two parts: La ) zl is 
the part of the contour of length 5 and L~Lt~ To evaluate the integral over La we make the replacement z = z(u) 
in (3.1). Estimating the integral with respect to L~Ls we obtain 

[3 2 + 1  + 1 dz 
E(zI'¢°) Jexp(-tou )G(u)du ~0(1-k)O(E(zl , to) ,exp(-oyy)) ,  G(u)=(z2-1)du (4.2) 

= 2~/ _~ 

where 0c, ~, ? are certain positive numbers. 
The second term on the right-hand side of (4.2) is supplemented in accordance with formula (3.4). 
Using Watson's lemma [6, p. 57] we obtain 

~=lo(t_x) + E(Zl,to)l 1 , ~'O(1)) (4.3) 

The asymptotic form (4.3) is non-uniform in the region of the front, i.e. ~, -- 1 (zl ~- 1). To obtain a uniform 
expansion we represent the function G(u) in the form 

Fig. 1. 
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c(u)=  1 
2(u- b) + T(u) (4.4) 

where b = ~/(-q(zl))i sign (Z -  1), while the finiction T(u) is holomorphic in a certain neighbourhood of the origin 
of coordinates for all X = 1. 

We therefore have [6, p. 525] 

+ ,  exp(-t0u2 ~ / / " '~_  20(1_ ~,)'~ ) ) 
j** u - t~ ~ " # du = iltE(Zl ,-ta)~,leffcl-ib~ ~ , ,  . 

Substituting (4.4) into (4.2) and using the last relation we obtain 

2~/ -a 

To calculate the main term of the expansion we gain use Watson's lemma 

, 

~ = ¼erfc(- ib¢°~) + '(z2- l)(21iq,,(zl ))J~ 4~/lt/b \01JJ (4.5) 

Note that it follows from the asymptotic form of the function eric (x) as x --> ~ that for fixed Z • 1 formula 
(4.5) can be replaced by (4.3). 

In the limit as ~, --, 1 we obtain in (4.5) the power asymptotic form on the front 

l , ,  
I~=~+ 1 6 ~  ¢oj~ +O , ~,--1 
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